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I am what I have and I have what I am,
what am I?

Homeomerosity in formal concept analysis
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Abstract. The term homeomerosity refers to when a whole and its parts are the
same kind of thing. For instance, a computer and its processor can both be classified
as machines. Homeomerosity is a prerequisite for meaningful addition and subtrac-
tion. For example, adding the area sizes of two independent regions gives another
area size, but adding an area size and a number of hours yields a number with a
peculiar unit. In earlier work, homeomerosity has been formalized with respect to
mereological parthood, but not in concurrence with a notion of class subsumption.
Both are essential to homeomerosity, as a part can only be observed to be of the
same kind as the whole if they are observed to be of some kinds in the first place. In
this work, we use formal concept analysis to organize conceptual representations
of parts and wholes in a shared contextual model. In our doing so, we show wholes
and parts can be represented by sub-concepts of a concept with respect to which
they are homeomerous.

Keywords. Homeomerosity, Ontological dependence, Amounts, Mereology, Formal
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1. Introduction

The verbs to be and to have are excellent devices for deduction. The first is a relation
of both class membership and subsumption (x is a cat, a cat is an animal) and the sec-
ond is a compositional relation (The cat has paws, the paws have nails). Although the
two verbs are at times inaccurate and ambiguous, they seem to be at the essence of con-
ceptual reasoning. There is a long philosophical tradition of defining terms by their in-
tension (i.e., things are everything they have) and extension (i.e., things are everything
they are) [1,15] and many things are express-able in terms of what they have and are. In
mathematics, sets have elements and are elements of other sets. In physics, particles have
(or are) energy. In social sciences, individuals have their identity and are members of
socioeconomic classes, and in spatial sciences things have a location and are a location.

In light of this discussion, the kind of things that have what they are and are what
they have forms an interesting case. Such things are called homeomerous2 [11]. For some

1Corresponding Author: Eric Top, e.j.top@uu.nl
2This roughly translates to ‘having similar parts’.
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concepts, the presence of homeomerosity is evident. A partition of water is water, and
if we agree that the bigger portion of water has or contains the smaller portion, then
this water must be homeomerous. However, the concept can be confusing. Trees are
considered to be different from the leaves they carry. However, trees are also organic
things, and so are their leaves. In this sense, trees with leaves are organic things that have
organic things. This poses the question; are or aren’t trees the same kind of thing as their
leaves? Similarly, a partition of water is generally still considered water, but what if that
specific partition is the only one with salt water? Is the part of this water still the same
kind of thing as the whole of this water? Or is it different because it is salty?

This kind of question becomes pertinent when the goal is to measure and reason
over quantities since this notion of sameness dictates the meaning of any sum of mea-
surements. A sum of five trees and seven flowers yields a total of twelve plants, but what
does it mean to sum seven cars and five hours? This is of particular interest in geographic
information science [19]. What attributes should be summed when their correspond-
ing regions are summed? The answers to these questions are contingent on how home-
omerosity is perceived. The concept has been specified, either in name or in spirit, in
previous works [11,26,9,22], but has only been formalized in mereological terms. Class
membership is implemented only through predicates, but the relations between different
predicates are left out of consideration.

We are thus left with questions about the interaction between the relations analogous
to to be and to have in things that are what they have and have what they are. Under what
conditions do the intension and extension of two concepts align in such a way that they
are ‘the same’? Exactly when is something what it has and does it have what it is? In
this work, we investigate this question, and more generally the notion of homeomerosity,
with the use of formal concept analysis (FCA) [24]. FCA is a method for organizing
information into a conceptual hierarchy. Objects and attributes are matched with each
other through an incidence relation and aggregated into concepts. Through the intent and
extent of objects and attributes, concepts can be ordered with respect to other concepts.
We use this structure to make sense of what things are. We also take inspiration from
mereology to imbue the incidence relation with notions of parthood to order things with
respect to things they have. Because both notions are combined in the same structure, the
concepts that arise can ‘have’ super-concepts of that concept. For example, trees have
leaves and those leaves are organic things, just like trees are organic things. We show
how the notions apply to an example case from geographic information science.

1.1. Related works

In the following, we discuss works related to geographic information, mereology and
homeomerosity, and concept representation frameworks, with emphasis on formal con-
cept analysis.

1.1.1. Geographic information science

Geo-analysts often work with representations of continuous phenomena, such as space,
time and material stuff (e.g., water). Developing a theory for this practice is a challenge,
and multiple structures have been proposed. A prominent example is that of a field [2].
A (geo-)field is a spatially-continuous function. Locations can be passed to the function
to retrieve thematic values (e.g., temperatures or land use qualities). [6] propose a com-
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parable concept with continuity over time. However, a theory of fields does not explain
all characteristics of continuous phenomena; retrieving a location based on a thematic
value can be ambiguous, for instance if that value is ‘water’. This led theorists to consider
other possibilities. [16] suggests geographic masses, inspired by the linguistic notion of
mass nouns. In [22], we formalized a similar concept, which we call amounts, as well
as a theory of extensive quantities over amounts. Homeomerosity takes a central role in
this formalization, the key idea being that if numeric qualities (e.g., area sizes) can be
summed, then there should be a corresponding mereological sum where the mereological
parts and the sum are of the same kind, i.e., the sum is homeomerous.

1.1.2. Mereology and homeomerosity

Mereology is the study of relations between parts and wholes. In most cases, the so-called
core mereology is defined through a weak partially-ordered (reflexive, antisymmetric,
transitive) parthood relation, but it can also be defined through a strict partial order [23].
Composition and decomposition principles predetermine which parts and wholes could
and which should exist. For instance, the mereological sum operators describes poten-
tial wholes and the weak supplementation principle states that if a whole has a proper
part, then it must have another distinct part. More specific mereologies can be defined
by opting for stricter principles [20]. The philosophical-mathematical study has gained
attention in the fields of ontological philosophy and ontology engineering [25,7,10,9],
geographic information science [22,19], and chemistry [4,12].

As [10] notes, mereology is well-suited for the formalization of containment, but
not so much for further characterizing roles, i.e., what the contained and the container
are. Mereology formalizes for instance what it means that an arm can be part of a body,
but not what it means that arms are not bodies. [8,9] distinguish wholes with (1) masses
or continuous parts, (2) discrete homogeneous parts, and (3) heterogeneous parts, but (2)
and (3) requires a notion of -geneity, which mereology does not offer. [5] provides a spa-
tial information predication calculus for when and how thematic information is perpet-
uated in mereotopological structures and shows the relevance of topological relations in
determining whether some region is homeomerous and whether thematic values exclude
one another. For example, if a region has a certain size, then its proper parts cannot have
a size greater than or equal to it. However, again, it remains unclear how the mereotopo-
logical structure interacts with the subsumption relations between the predicates.

[11] discusses and formalizes the concept of homeomerosity in pursuit of a Sub-
QuantityOf relation in Web Ontology Language (OWL) and suggests a view of quan-
tities as maximally self-connected objects. Homeomerosity concerns the mereological
phenomenon of when parts and their wholes are the same kind of things. For example,
a part of a spatial region is also a spatial region. However, it remains unclear how it is
determined of what kind something is. This is pertinent because, for something to be of
the same kind as something else, it needs to be of a kind in the first place. This means
we need to combine conceptualization and mereology for a sufficient notion of home-
omerosity.

1.1.3. Formal concept analysis

Formal concept analysis is generally considered a mathematically-grounded conceptu-
alization approach [24]. This is because the theory is built around the idea of studying
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binary relations using complete lattices. Early contributions in the field focused on de-
veloping the theory, while more recent works contributed by increasing computational
efficiency and developing pruning techniques[13]. Furthermore, a variety of extensions
has been developed, such as triadic FCA, with which ternary relations can be studied,
pattern structures, which extends FCA to graphs and numeric values, and logical concept
analysis (LCA), which takes a first-order logic approach to FCA [18]. FCA finds use in
mining text, web, chemistry, and bioinformatical data, as well as in ontology engineering
[17].

2. Concept lattices

In this section we explain the structure of FCA and introduce additional definitions. Be-
cause the terminology of FCA may cause confusion, we first reflect on our interpreta-
tions of relevant terms. The FCA framework is centered around a binary relation called
incidence. The domain or set of departure is called a set of objects and the codomain
or set of destination is called a set of attributes. As such, incidence can be considered a
subset of the Cartesian product of objects and attributes. FCA relies on the idea that the
incidence relation can be decomposed into concepts, which are binary tuples containing
a set of objects and a set of attributes. Concepts can be ordered in a complete lattice,
aptly named a concept lattice, based on the subset relations between their sets of objects
and dually between their sets of attributes.

In its core, FCA is the analysis of structures that arise from the incidence relation.
However, the terminology is overly-suggestive and may cause confusion. For example,
the term ‘concept’ is still subject to discourse [14], but in FCA it refers to a specific
kind of tuple. We do not intend to subject the terms to scrutiny and perpetuate the use
of potentially-problematic FCA-terminology, but we do so with only its meaning within
the FCA framework in mind. When we discuss objects and concepts, for example, we do
not mean the philosophical notion of object or concept per se, but the specific notions of
FCA-object and FCA-concept. Any subsequent discussion of objects and concepts thus
concerns these FCA-versions. In the remainder of this section, terms introduced in italics
are intended as FCA-specific terms.

2.1. Formal concept analysis – “to be”

In the following, we interpret the notion of being in terms of specification of concepts,
such that the more specific concept ‘is’ subsumed by the more general concept.

In FCA, a context is defined as a triple K = (G,M, I), where G is a set of objects,
M a set of attributes, and I ⊆ G×M is a binary relation called incidence that expresses
which objects are incidental with which attributes [24]. Incidence can also be understood
as the graph of K. Instead of (g,m) ∈ I, we write gIm. For subsets A ⊆ G of objects and
subsets B ⊆ M of attributes, two derivation operators ↑ and ↓ may be defined as follows:

A ↑= {m ∈ M | (∀g ∈ A) gIm} (Attributes of objects) (1)

B ↓= {g ∈ G | (∀m ∈ B) gIm} (Objects of attributes) (2)

A formal concept of K is a pair (A,B) such that A ⊆ G,B ⊆ M,A ↑= B,B ↓= A, where A
is the extent and B is the intent of (A,B). The set of all formal concepts of K is denoted
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as B(G,M, I) or B(K). The formal concepts in K can be ordered by subset relations
between extents and between intents:

(A1,B1)≤ (A2,B2) ⇐⇒ (A1 ⊆ A2 ⇐⇒ B1 ⊇ B2) (Specification) (3)

From this, it can be proven that ⟨B(K),≤⟩ forms a complete lattice [3]. In the con-
text of FCA, ≤ is also known as the specification or specialization operator. Joins and
meets exist and satisfy the constraints that (A1,B1)∨ (A2,B2) = (A2,B2) iff (A1,B1) ≤
(A2,B2), and (A1,B1)∧ (A2,B2) = (A1,B1) iff (A2,B2) ≤ (A1,B1). Any complete lat-
tice is bounded, which means there are a supremum and an infimum, respectively
⊤,⊥∈B(K). In order to separate these from concepts that arise from at least some inci-
dence, we let ⊤= (G, /0) and ⊥= ( /0,M) in any B(K). Concepts on the left-hand side of
≤ may be referred to as sub-concepts, while those on the right-hand side may be referred
to as super-concepts. They may also be called more specific and more general.

We add some additional notation for convenience. We let a concept (A,B) be de-
noted as c. Subscript specifiers of the two notations always correspond, meaning, e.g.,
(Ax,Bx) = cx. This lets us consistently refer to the objects Ax and attributes Bx of some
concept cx without having to repeatedly define particular concepts as tuples of some ob-
jects and attributes. It also makes concise to write that a concept has or is formed over a
certain object or attribute. For example, a ∈ Ax and b ∈ Bx means that cx is formed over
object a and attribute b. If we just mention Ax or Bx, we assume there exists some cx.
Similarly, the notation Kx always corresponds with a notation (Gx,Mx, Ix) with variable
subscript x, and the appearance of Gx, Mx, and Ix suggests the existence of Kx.

2.2. Ontological dependence – ”to have”

It can be argued that some objects depend on other objects in order to be, but not (nec-
essarily) the other way around [21]. A house needs walls to be a house, but walls do
not need a house to be walls. In logical terms, a definiendum needs its definiens, but a
definiens does not need its definiendum. The elementOf relation ∈ from set theory ful-
fils a similar role. A set needs its elements to be what it is, but elements do not need their
set. We informally consider this dependence in terms of having. If a thing depends on
other things in order to be what it is, then it can be said it has those things. We formalize
this as a FCA-specific notion of ontological dependence.

Objects may have objects as attributes. Using this, concepts can be related to other
concepts based on whether the intent of one concept depends on the extent of another.
We call this relation between concepts dependence and denote it by ⪯, where cx ⪯ cy
means that cy depends on cx. Formally:

cx ⪯ cy ⇐⇒{a ∈ Ax | ∀cz((cz ≤ cx and a ∈ Az)⇒ cz = cx)} ⊆ By (Dependence) (4)

For example, a bottle of water has water. The former depends on the latter because ob-
jects of the concept ”water” are at the same time attributes of the concept ”bottle of
water”. If there was no water in the bottle, the bottle would no longer be an example
of the concept bottle of water. Note that concepts that depend on the same concept can
be ≤-ordered with one another. A bottle of water is a specific container of water. In
the definition, Ax is subsetted to exclude objects that are represented by more specific
concepts. Consequently, the relation can be established between, e.g., two concepts with
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respectively the objects ‘bottle of water’ and ‘water’ regardless of whether the concept
of ‘water’ extends over ‘salty water’. We exclude the infimum and supremum from the
relation, i.e., ¬(⊤ ⪯ cx) and ¬(cx ⪯ ⊥) for all cx in B(K). This step makes discussion
and visualization of the ⪯-relation simpler.

2.3. Homeomerosity

We define homeomerosity as a relation between a concept and another concept with re-
spect to which the first concept is homeomerous. A concept cx is homeomerous with
respect to cy if cx as well as all concepts cz that cx depends on (cz ⪯ cx) are sub-concepts
of cy, i.e.:

H(cx,cy) ⇐⇒ cx ≤ cy and ∀cz(cz ⪯ cx =⇒ (cz ≤ cy)) (Homeomerosity) (5)

For example, a forest, its trees, and its leaves are all homeomerous with respect to being
organic things. In earlier work we defined the concept of amount [22], and we believe
homeomerosity to be its characterizing property. Therefore, if a concept is homeomerous
with respect to a concept, we consider it to be an amount of that concept. For example,
an amount of space has parts that are amounts of space, and it also is itself part of an
amount of space. In our earlier work, we specified amounts with respect to a domain they
were in, such as the domain of space or the domain of time. This domain was specified
as a set that contains all amounts of the same kind. Here we can specify cy in (5) as the
domain of amounts, so instead of a set the domain is a super-concept.

Note that H(cx,cy) does not have any requirements with regards to how the concept
cx is ≤-ordered with respect to the concepts it depends on. For example, a metal fork has
a handle, and this handle is not a fork. However, a metal fork and all its parts may all be
metal things. Therefore, H(Metal Fork,Metal thing). Of course, a metal fork could have
parts that are not metal things, which would mean it is actually not homeomerous. In
such cases, a super-concept could be specified which only has the metal parts of a metal
fork as its parts.

We may further distinguish cases where the attributes are required to be homeomer-
ous with respect to the same concept as well. We denote this by HE and call it extensive
homeomerosity:

HE(cx,cy) ⇐⇒ ∀cz(cz ⪯ cx =⇒ H(cx,cy) and H(cz,cy)) (Extensive hom.) (6)

For example, an amount of water is extensively-homeomerous if all its parts are consid-
ered amounts of water as well. However, note that the parts of those parts do not need
to be homeomerous with respect to water for the first amount of water to be extensively-
homeomerous. If we want to specify that all parts of an amount of water are homeomer-
ous with respect to water, we can use recursion. We denote such cases by Hρ and call it
continuous homeomerosity:

Hρ(cx,cy) ⇐⇒ ∀cz(cz ⪯ cx =⇒ H(cx,cy) and Hρ(cz,cy)) (Continuous hom.) (7)

Continuous homeomerosity of x with respect to an amount of water could imply, for
example, that if you split x in half, then divide one half into seven parts, and split one
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part in half again, you will get an amount of water. This continues until the point where
parts themselves do not have parts anymore, i.e., the atomic level. In terms of concepts,
a concept cx could be considered atomic if it has no relation such that cy ⪯ cx. It could be
that there is no atomic level, for example if the underlying incidence relation is infinite.

3. Homeomerosity in geographic information: A simple example case

Concept lattices can be used as structures for metadata to determine whether data qual-
ities are transferable from inputs to outputs through mereological operations over geo-
graphic data. For example, if one were to take a segment from ‘industrial area’, that seg-
ment could be called ’industrial area’ as well. However, such reasoning does not apply
for all attributes; a segment of a city is no longer a city. In the following, we show how
aggregations of data representations of geographic phenomena can be represented using
FCA.

3.1. Merging Het IJsselmeer, Het Markermeer, and de Waddenzee

The Netherlands embrace two lakes and are crowned by an inland sea to the North. The
first of the lakes, het IJsselmeer, is separated from de Waddenzee by a well-known dam
named de Afsluitdijk3. To the south it borders the second lake, het Markermeer, with
only de Houtribdijk, a dam spanning 26 kilometers, in-between them. Over time, after
the dams were constructed during the 20th century, the water in the lakes turned sweet,
while the water in de Waddenzee stayed salty. Figure 1a shows a map of the three water
bodies. The three water bodies are represented as polygon vector data, with one polygon
for each water body, in a geographic information system (GIS).

A geo-analyst may want to consider scenarios where either or both of the dams were
to be removed. To achieve this, they may merge – also termed dissolve or amalgamate –
het IJsselmeer with either or both het Markermeer and de Waddenzee. Two merges of the
two sets of contiguous water bodies are shown in Figure 1b. A common problem with
this kind of merging procedure is that in a GIS it is not specified which attributes the
resulting polygon may inherit from the inputs. It is up to the analyst to decide whether
the resulting polygons have sweet water, salty water, or whether this dichotomy should
be left unspecified.

The scenario can be described by a set of incidence tuples and consequently by con-
cepts formed over these tuples. For example, a sea is incidental with salt water and a lake
is incidental with sweet water, so they are – in part – some sort of container of respec-
tively salt water and sweet water. Het IJsselmeer, het Markermeer, and de Waddenzee
are also such containers, but they also contain more specific things by which they can
be identified. Three generic attributes IJsselmeerID, MarkermeerID, and WaddenzeeID
may serve as amalgamations of these specific things. A merge of two bodies of water can
also be considered a container of those two bodies of water. For example, het IJsselmeer
and het Markermeer can be considered attributes of some merge IJ & M.

Let x be an intransitive and irreflexive set of incidence tuples describing the scenario.
The transitive closure of this set is denoted as x+ and the reflexive closure as xref. Let
T = x+ \ x and R = xref \ x. Table 1 shows the incidences of x, T , and R, with objects

3We use the Dutch particles de and het for Dutch placenames.
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(a) het IJsselmeer, het Markermeer and de
Waddenzee in the Netherlands

(b) Merges of het IJsselmeer with Waddenzee
(Blue) and with Markermeer (Orange).

Figure 1.: Merge of three lakes

Table 1.: Contexts of the three water bodies. Objects are row headers, attributes are
columns headers. A symbol (x, R, or T ) at a cell denotes an element of the symbolized
set. For example, at the intersection of ‘Water’ and ‘Seas’ there is an element of T .
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along the y-axis and attributes along the x-axis. We build three contexts from the inci-
dences, namely one which is intransitive and irreflexive (I = x), one which is transitive
and irreflexive (I = x∪T ), and one which is transitive and reflexive (I = x∪T ∪R). In
each of the contexts, the sets of objects and attributes stay the same.

For convenience, we address concepts by the objects or the attributes shown on
their corresponding nodes in the concept lattice. We address concepts through objects
with the notation Co(object) and through attributes with the notation Ca(attribute). For
example, the most specific concept of the object Markermeer would be denoted as
Co(Markermeer) and the most general concept of the attribute Sweet water would be
denoted as Ca(Sweet water).

3.2. Concepts from an irreflexive, intransitive incidence

The concept lattice of the context over the irreflexive, intransitive incidence is shown in
figure 2. The most salient characteristic of the lattice is that the ≤-order and ⪯-relation
are disjoint. This observation already indicates that no example of homeomerosity can
be found.

Figure 2.: Concept lattice derived from incidences x in Table 1. Attributes are shown in
the upper half and objects in the lower half of the nodes. Black lines denote the ≤-order
according to the principles of [3]. Sub-concepts inherit attributes from super-concepts
and super-concepts inherit objects from sub-concepts. Blue arrows denote the ⪯-relation,
with the arrowhead landing at the most general preceded concept.

Ca(IJsselmeer) introduces no new attributes. The reason this concept emerges is
because otherwise the principles of the lattice structure would be violated; Co(IJ & M)
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and Co(IJ & W) would have had two candidates for their join, namely Co(Lakes) and
Co(Seas).

From these concepts another oddity emerges, namely that, e.g., Co(IJ & W) is a sub-
concept of Co(Lakes). However, de Waddenzee (W) is not a lake, but a sea, which begs
the question why Co(IJ & W) would be considered lakes. The technical answer is that the
attributes of Co(IJ & W) are a superset of those of Co(Lakes). It seems that in this case
the object Lakes is misleading. In actuality, the concept represents things that are at least
in part lakes. In other words, the concept represents some lakes, but perhaps also some
other things.

3.3. Concepts from an irreflexive, transitive context

The concept lattice of the context over the irreflexive, transitive incidence is shown in
figure 3. We now see that the ⪯-relation is embedded in the ≤-order. This also suggests
there may be cases of homeomerosity, even though irreflexivity makes it so that there are
no cases where cx ⪯ cx.

Take the example of Co(IJ & M), which is a sub-concept of Co(Markermeer), which
in turn is a sub-concept of Co(Lake). Just as with the case we discussed in the last sub-
section, sc represents only that the concept has some Markermeer, not that all attributes
are cases of Markermeer. In fact, Co(IJsselmeer) is not a sub-concept of Co(Markermeer),
which means Co(IJ & M) is not homeomerous with respect to Co(Markermeer) However,
we can observe that all attributes of Co(IJ & M) are objects of sub-concepts of Co(Lake).
That means that the concept of the merge of IJsselmeer and Markermeer is homeomerous
with respect to the concept of lake, i.e., H(Co(IJ & M), Co(Lake)).

The concept of the object lakes is also homeomerous with respect to the concept of
the object lake. However, while Co(IJ & M) is a sub-concept of the concept of lakes, it
is not homeomerous with respect to the concept of lakes. That is because het IJsselmeer
and het Markermeer are each a lake, but they do not ‘have’ lakes.

Co(IJ & W) is only homeomerous with respect to Co(Water body), since one of its
attributes is a sea and another is a lake. Also, Co(IJ & M) and Co(IJ & W) are both home-
omerous with respect to Co(Water body). This suggests that if there were an aggregation
over all three water bodies, then this would also be a water body.

3.4. Concepts from a reflexive, transitive context

The concept lattice of the context over the reflexive, transitive incidence is shown in
figure 4. At first glance, two characteristics stand out. Firstly, all concepts depend on
themselves and are the most general concept that they depend on. This seems to be
due to the reflexivity of the incidence relation. Secondly, the ≤-order is often mediated
by blank concepts. These concepts emerged to preserve the lattice structure. Since they
suggest new concepts that were not considered during the construction of the context,
such concepts are useful for concept mining purposes, but for our goals here they can
mostly be ignored.

Just like before, examples of homeomerosity can be found. For example, Co(IJ & M)
is homeomerous with respect to Co(Water). However, due to reflexivity, many of the in
Figure 3 observable cases of homeomerosity do not re-occur here. For example, Co(IJ &
M) is not homeomerous with respect to Co(Lake), because the concepts of het IJsselmeer
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Figure 3.: Concept lattice derived from incidences x∪T in Table 1. Attributes are shown
in the upper half and objects in the lower half of the nodes. Black lines denote the ≤-order
according to the principles of [3]. Sub-concepts inherit attributes from super-concepts
and super-concepts inherit objects from sub-concepts. Blue arrows denote the ⪯-relation,
with the arrowhead landing at the most general preceded concept.

and het Markermeer are no longer sub-concepts of the concept of lake. Co(IJsselmeer)
also has an attribute IJsselmeer, which Co(Lake) does not and Co(Lake) has an attribute
Lake, which Co(IJsselmeer) does not.

There are also examples of continuous homeomerosity. For instance, Co(Lakes) is
continuously homeomerous with respect to Co(Water), since all its attributes are also
continuously homeomerous with respect to Co(Water). Due to reflexivity Co(Water) is
also continuously reflexive with respect to itself. Note that, however, Co(Lakes) is not
continuously homeomerous with respect to, e.g., Co(Lake), since not all attributes of the
latter are themselves lakes.



July 2023

Figure 4.: Concept lattice derived from incidences x∪ T ∪R in Table 1. Attributes are
shown in the upper half and objects in the lower half of the nodes. Black lines denote the
≤-order according to the principles of [3]. Sub-concepts inherit attributes from super-
concepts and super-concepts inherit objects from sub-concepts. Blue arrows denote the
⪯-relation, with the arrowhead landing at the most general preceded concept.

4. Discussion and conclusion

In this study we investigated how to implement the notion of homeomerosity in formal
concept analysis (FCA). We considered a thing homeomerous if it has what it is and is
what it has. We used the specialization operator (≤) as an analogy to the verb ‘being’.
Additionally, we formalized a new relation between FCA-concepts, namely dependence
(the ⪯-relation), to formalize a notion of ‘having’. From the synergy between the two
relations we defined a notion of homeomerosity in FCA. We tested our definition on a
simple example of an analytical operation commonly-applied in geographic information
science. The results show that a theory of homeomerosity in FCA is tenable for both
parthood and proper parthood relations in mereology. We also demonstrate that letting
the incidence relation have varying properties, such as reflexivity and transitivity, has
profound effects on the conceptual outcomes.

We should note that the results are still somewhat preliminary, since our definitions
are not fully axiomatized. Specifically, we have not provided a formal mereology and
instead relied on parthood examples. We leave this formalization for future work. Should
our findings hold, they would have important implications for the field of mereology. It
is said that ”nothing substantive follows from [choosing proper parthood as a primitive
instead of parthood]” [23, section 2.1], but our results show that whether or not something
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is considered part of itself leads to different conceptualizations. Precisely, the ≤-order
and ⪯-relation arising from an irreflexive incidence are not embedded in the concept
lattice that arises from the incidence’s reflexive extension. This problem can potentially
be resolved by annotating additional incidences according to sub-concept - super-concept
relations in the ≤-order (E.g., if sea is part of itself, then it also has a water body as
part), but this begs the question of whether this knowledge can be considered available a
priori, i.e., before the ≤-order is established.

Our definition of homeomerosity is not affected by this problem. As we have shown,
it generalizes over both cases. We considered how merges of water bodies would stand
to the individual water bodies in the same FCA-context. Depending on the assumed
properties of the incidence relations, they are either ≤-unordered or the merges are sub-
concepts of the individual water bodies. In no case is a specific merge homeomerous with
respect to one of its individuals, but in generality, they have been found to both be water
bodies.

We discovered the FCA-specific notion of dependence during our search for a notion
of ‘having’ for the definition of homeomerosity. From our initial experience, it seems
thedependence relation is a powerful tool for reasoning in FCA, on par with the specifi-
cation order. We have not found earlier work (e.g., not in [18]) where such a relation is
formalized.

Our tests of continuous homeomerosity were limited and questions remain on this
part. It seems infinitely-continuous homeomerosity only applies to concepts with respect
to properly-reflexive concepts. What we mean by the latter are concepts where A = B.
This could be problematic because this gives too little potential for defining meaningful
concepts. For example, things can only be continuously-homeomerous with respect to
water if water is not defined in terms of its parts (e.g., three atoms), but only in terms
of it being incidental with itself. There are two possible approaches for alleviating this
problem. First, the definition itself could be revised, and second, the theory could be
extended to host maneuvering multiple contexts. In the latter case, something could be
continuously-homeomerous in one context and not in another. We believe practice shows
evidence of the latter. In geographic information science, a geometric shape representing
water can be partitioned infinitely many times without losing its representative quality of
being water. At no point, the water is split into atoms.

We also did not consider how merges of merges stand to merges and the merged
individuals. There seem to be two possibilities. Firstly, a merge of merges could be spec-
ified as a merge of the individuals. This would make it a sub-concept of the first merges.
It could also be specified with the first merges as attributes. In either case, we expect
homeomerosity to be preserved. To show this requires overcoming challenges regarding
the specification of the concepts themselves. Strictly speaking, this was beyond our goals
in this paper. However, for a notion of homeomerosity to become workable, this seems
like a problem that should be addressed in future research.

If so, we believe homeomerosity and FCA can be applied for the development of a
metadata structure that automatically tracks class parthood through mereological proce-
dures. We showed merges as examples, but we believe this could also be applied during
geometric intersections and maybe even some data transformations.
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