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Abstract
The next generation of Geographical Information Systems (GIS) is anticipated to automate some of
the reasoning required for spatial analysis. An important step in the development of such systems is a
better understanding and modeling of the decision process about which arithmetic operations can be
meaningfully applied to geographic quantities. The concept of extensivity plays an important role in
determining precisely what amounts are, when they can be aggregated by summing them, and when
this is not possible. However, currently, multiple contrasting definitions of extensivity exist, and
none of these suffice for handling the different practical cases occurring in geographical information.
As a result, GI-analysts predominantly rely on intuition and ad hoc reasoning to determine whether
two quantities are additive. In this paper, we present a novel approach to formalizing the concept
of extensivity. In our algebraic definition, we do away with some of the constraints that limit the
use of older approaches. By treating extensivity as a relation between quantities, our definition
offers the flexibility to relate a quantity to many domains of interest. We show how this new notion
of extensivity can be used to classify the kinds of amounts in various examples of geographical
information.
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Preface

This work is a thesis submitted in fulfillment of the requirements of the MSc. programme
Geographical Information Management & Applications (GIMA). This thesis is an extended
and adapted version of a paper that has been submitted to GIScience 2021. Section 4 is new
in this work. This work has been primarily produced by E.J. Top, but contains work from
others. For the sake of transparency, an author contributions statement has been added after
the conclusion.

1 Introduction

An important distinction in geographical analysis is between quantities that can be summed
and quantities that should be averaged during aggregation. These are known as respectively
extensive and intensive quantities. Human analysts can intuitively tell how a quantity
should be processed when two regions are merged. Two temperature values of two spatial
regions, for example, should obviously not be summed, but instead averaged when the
regions are aggregated. In geographical information systems (GIS), however, the values
may be represented by the same concrete data types, and thus cannot be systematically
distinguished. Current GIS lack a method for automating aggregations because we lack a
theory of extensivity that can tell us under which circumstances we can sum up quantities.
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One way to capture extensivity is in terms of a relation between different measurements [29].
This notion of extensivity entails that quantities can be aggregated if they share underlying
domains of measurement by which they are controlled and measured. Controlling quantities
need to be separated from each other, and both controlling and controlled quantities need to
be additive in a certain sense. For example, the population of Europe can be aggregated
with the population of Africa, as both populations are part of the world population, but
not with the summed GDP of Africa, which does not share the same measurement domain.
Here, the spatial administrative units are controlling and population counts are measured.
However, Europe’s population can also not be aggregated with the population of Utrecht,
because even though they share the same measurement domains, Utrecht is already a part of
Europe. While such observations may seem intuitive, the sciences still lack a formalization
of these kinds of considerations. Most existing definitions that reached prominence are either
too restrictive or too vague, leaving room for inadequate interpretation in the context of GIS
(See section 2.1).

A concise yet flexible definition of extensivity would enable geodata models to distinguish
whether spatial arithmetic is applicable or not. Scheider and Huisjes [29] show the merit of
spatial extensivity in this respect and manage to automatically distinguish extensive from
intensive quantities with high accuracy. However, their approach is not formalized and
does not account for quantities that are additive in domains other than space, such as e.g.
time. If we recognize there are multiple dimensions of extensivity, new ways to categorize
quantities emerge. A water flow accumulation is extensive in space and time, the cost of a
stay at a hotel is extensive in time and some monetary currency, and the cost of rental cars is
extensive in time (i.e. the duration of renting), space (i.e. the amount of kilometers driven)
and the amount of cars (i.e. renting two cars is more expensive than one). Extensivity offers
a new semantic dimension by which data can be discovered and processed. A definition of
extensivity would also contribute to a data-driven science [15, 12] by allowing to infer which
arithmetic operations can be applied to available quantities.

In this paper, we formalize extensivity in a way which is general enough to be applied to
the many cases relevant in GIS, and which is distinctive enough to decide on the applicability
of aggregation (sum) operations. Based on the formalism, we develop a categorization of
quantity measures in geographical information relative to various domains of control. Our
contributions are threefold and provide answers to the following questions:

In what form can extensivity be unambiguously formalized in terms of aggregations of
quantities?
How can extensive quantities be measured across various domains of time, space and
content that are relevant for aggregation in GIS?
How can aggregations in geographical information be systematically categorized according
to different kinds of extensive quantities?

The rest of the paper is organized as follows. First, we review what is known about
extensivity, quantities and measurement. Second, we reinterpret Sinton’s [31] three roles of
measurement (i.e. measure, control, constant) and show in an informal manner how they
can be used to specify extensivity relations. Third, we present a formalized algebraic theory
of extensivity as a relation between a measure and one or more controls. Fourth, we propose
twelve categories of measurement of extensive quantities in the context of geographical
information. Finally, we shortly discuss the implications of our findings and conclude by
answering the posed research questions.
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2 Extensivity, quantities, and measurement

We start with reviewing existing literature on extensivity and quantities and scrutinize the
underlying approaches for our purpose. Furthermore, we critically examine Sinton’s notion
of controlled measurement.

2.1 Extensivity and intensivity

The concept of extensivity originates from the fields of Physics and Chemistry where it is
used to describe the mathematical nature of properties. Its introduction can be accredited to
Tolman [34], who envisions extensivity as a way to describe phenomena whose measures are
naturally additive. Of all phenomena he identifies only five as extensive in this sense, namely
length, time interval, mass, electric charge, and entropy. For a contemporary definition of
extensivity, scholars often refer to the green book of the International Union of Pure and
Applied Chemistry (IUPAC), which describes an extensive quantity as "a quantity that is
additive for independent, non-interacting subsystems" [7]. In practice, there seems to be
an informal consensus that only properties like volume or mass are considered extensive.
Even within this consensus, disagreement exists about what physical properties extensivity
depends on. A number of papers from Physics and Chemistry try to address the confusion
surrounding the concept [27, 2, 23]. Mannaert [23] finds that the expressions ’extensive
quantity’ and ’extensive property’ are used interchangeably — He favours the use of the
term ’extensive quantity’ — and that some use additivity to define extensivity (i.e. the sizes
of two quantities can be added up during aggregation) while others use proportionality (i.e.
a quantity inextricably changes with relation to changes of another quantity). Some scholars
limit extensivity to a relation of properties with respect to mass, while others relate them to
the amount of substance or volume [23]. This interpretation of extensivity with respect to
some specific kind of physical presence deviates considerably from the original theory [34],
which holds that properties may be extensive also with respect to time or entropy. Not only
do scholars consider different properties as the source of extensivity, they also disagree on
the mechanisms of extensivity itself.

The concept of an extensive quantity is opposed by that of an intensive quantity, which
has been defined as "a quantity that is independent of the extent of the system" [7]. Tolman
[34] argues that, except for his five fundamental quantities, all quantities are intensive,
because they are in some way derived from the five fundamental quantities. A speed, for
example, is found by dividing a length (i.e. the distance) by a time interval. Some scholars
hold that not all quantities are either extensive or intensive. They argue that some quantities
are expressed as conjugates [1] or composites, which have characteristics of both.

2.2 Quantities

Quantities are described as "...that by which a thing is said to be large or small, or to
have part outside of part, or to be divisible into parts" [19]. Specifications of quantities are
frequently present in spoken language [33]. For example, the sentence ’The flock of birds
flew over the wide river’ not only specifies two different entities (i.e. ’birds’ and ’river’), but
also details their quantities (i.e. ’flock’ and ’wide’) and their interrelation (i.e. ’over’).

From a semantic viewpoint, quantities should be distinguished from numbers, which are
mathematical objects for counting, and measurement units, which indicate the measurement



4 The Semantics of Extensive Quantities in Geographical Information

system a quantity is measured in1. In measurement theory, it is common to subdivide
measurement systems using measurement levels, which range from nominal through ordinal
and interval to ratio [32]. Arguably, these levels encode increasing amounts of information
of a quantity, respectively providing information about class membership, order, relative
position and absolute effect of a quantity. Chrisman [4] proposes extending the levels with
counts, degrees of class membership, cyclical ratio, derived ratio, and immutable absolute
measures, like probability.

Quantities can be negative and might be linearly ordered or not. For example, walking
backwards for twenty meters can be seen as a negative quantity of forward movement
associated with the number -20 and the unit ’meters’. The term magnitude, also called
impact or size, is used to measure a quantity on a linear scale. Scholars sometimes distinguish
multitudes from magnitudes [21]. Shortly put, multitudes refer to collections of discrete
entities (e.g. a collection of cars), while magnitudes capture linearly order-able phenomena
(e.g. the length of a road). Plewe [25] vaguely refers to these phenomena as ’geographic
masses’. Our approach (see below) can be used to make these notions precise.

Information about the extensivity of a quantity is closely related to its part-whole relations.
Such relations are commonly considered homeomerous with respect to its parts, meaning that
all parts are of the same kind of quantity as the whole [13]. For instance, sectioning a portion
of water results in sub-portions of water. According to Guizzardi [14], homeomerous part-
whole relations can be modelled as mereological sums (i.e. aggregations of the subquantities)
or by means of containment (e.g. a bottle of water). He suggests to conceptually model
quantities as maximally self-connected parts. This approach implies that parts of a quantity,
also referred to as pieces [22], are only instantiated if there is a need. For example, a body of
water may be subdivided into its parts to identify sweet water and salt water if necessary, but
this is not required for capturing the water concept. Guizzardi’s mereological approach also
works for universal properties and classes. For example, a car is a member of the collection
of all cars (i.e. the class of ’cars’), and the mass of said car is a part of the set of all mass in
the universe (i.e. the ’mass’ property).

Mereological relations are essential because they specify whether two quantities are
distinct, whether and how much they overlap and whether one quantity value contains
another. For example, a university may host multiple lectures at once, meaning they share
the same quantity of time. Summing the total time of the lectures may indicate how long it
would hypothetically take to attend all lectures (e.g. 400 hours), but this does not correspond
to the extent of time that is actually occupied by these lectures (e.g. 3 hours). If two lectures
with a duration of 2 hours each overlap for 1 hour, they together occupy 3 hours in time.
Claramunt and Jiang [6] show that such relations are not limited to space or time, but also
exist between conjunctions of both.

2.3 Measurement of quantities

Sinton [31] is well-known for his idea that the measurement of spatial information requires
attribute information about the space, time and theme components of the recording. Sinton
argues that during any measurement each one of these three components fills the role of the
constant, the control or the measure:

1 Different measurement systems or reference systems [5] can represent the same kind of quantity. For
example, the meter scale and the feet scale both represent the same quantity of lengths.
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The constant component, also referred to as the support or the fixed component, does
not change at any point in the measurement process.
The control component is allowed to vary over its measurement scale at the observer’s
discretion.
The measure component is observed and its variation with respect to the control is
recorded.

Take the example of a precipitation measurement. Precipitation is commonly measured
with a rain gauge. This rain gauge fixes the spatial extent of the precipitation measure, e.g.,
to 1 m2. The amount of water falling into the rain gauge is then measured in kg or liters
(mm) over a variable amount of time, e.g. an hour or a day [5]. With an established constant
(i.e. space) and control (i.e. time), it is possible to measure the theme component, which in
this case is rainfall in mm. Sinton’s work contains two important messages: 1) a measurement
of a phenomenon requires other variables to be controlled, and 2) geographic information
contains a combination of spatial information, obtained through the measurement of locations
and regions, temporal information, obtained through the measurement of the progress of
time, and thematic information, obtained through measuring the properties of a substance
or content.

Chrisman [5] argues that apart from space, time and theme, there is another kind of
control, namely control by relationship. For example, the measurement of a flow of export
products from one country to another first requires establishing a relation between the two
countries. Although relevant, we leave the study of network-controlled extensive quantities
to future work.

The roles of measure, control and constant are essential for our purpose, because they
aptly capture how quantities can play different roles in defining extensivity. Shortly put, it
can be said if wo measured quantities are extensive, they share the same kind of control(s).
However, Sinton’s definition requires some scrutiny before it can be applied to quantities.
The roles are by no means fixed to the three components of GIS. Many measurements ignore
one or more of the components. For example, when measuring the duration of a given
lecture, there is no need to take the size of the lecture room or the didactic ability of the
lecturer into account. In fact, only the time at which the lecture happens is required as a
control for the duration. Thus, for this example, the time component is both measure and
the control at once. Similar examples could be given for the space and theme components.
Furthermore, this also shows that the components space, time and theme are too coarse
to distinguish different types of quantities within the same component, and thus are too
coarse for capturing extensivity. We therefore adopt two alterations of Sinton’s idea. Firstly,
we interpret Sinton’s components as classes of quantities which might play a role or not
in a given measurement. We thus allow for arbitrary combinations of quantities filling the
roles in a single measurement. Secondly, we assume that quantities exert no influence on
measurement (i.e. are kept constant) unless specified otherwise. This prevents the need for
explicitly filling the constant role.

3 A formal theory of extensive quantities

In the following we introduce a formal theory of extensivity of quantities in First Order Logic
(FOL). FOL is sufficient to reason about a single quantity domain. Strictly speaking, we
go beyond FOL when talking about different domains in Def. 4, but this is not part of the
current formalism. Free variables in propositions are implicitly all-quantified. Axioms have
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been checked for consistency and all theorems were automatically proven based on resolution
using Prover92. The script is available online3.

3.1 Quantities, amounts and magnitudes
Intuitively, quantities can be added up to or removed from each other, resulting in a new
quantity of which original quantities are parts. For example, a quantity of people can be
added up to another quantity of people to form a total sum of people. Furthermore, each
of these quantities can be counted and thus compared to each other on a common scale of
measurement. In our theory, this means that quantities can be part of each other and can
be summed up and subtracted from each other. Furthermore, quantities can be measured on
a linear scale. In the following we formalize this intuition based on first distinguishing the
notions of quantity, amount and magnitude.

3.1.1 Theory of Quantities
To capture intuition 1, we assume a quantity domain to be a domain of values together with
algebraic operations that satisfy the following partially ordered algebra:

I Axiom 1. Partial order

x ≤ x Reflexivity
(x ≤ y ∧ x ≥ y) =⇒ x = y Antisymmetry
(x ≤ y ∧ y ≤ z) =⇒ x ≤ z Transitivity

I Axiom 2. Sums and differences

x + y = y + x Commutativity
(x + y) + z = x + (y + z) Associativity
x + 0 = x Identity
x +−x = 0 Inverse
x ≤ y =⇒ x + z ≤ y + z Translation invariance

This introduces operations for adding and subtracting values. Note the identity (empty)
element 0 which can be summed up without changing anything and which results from
subtractions. Translation invariance logically embeds the partial ordering into the sum
operation, by saying that the ordering stays invariant when adding the same quantity on
each side4. Based on this, we define the following functions and predicates:

I Definition 1. strict order and overlap

x < y ⇐⇒ (x ≤ y ∧ ¬(y ≤ x)) Strict order
O(x, y) ⇐⇒ ∃z(z ≤ x ∧ z ≤ y) Overlap
y > x ⇐⇒ x < y Strictly greater than
y ≥ x ⇐⇒ x ≤ y Greater than or equal

2 https://www.cs.unm.edu/~mccune/prover9/
3 http://geographicknowledge.de/vocab/quantity.txt
4 This axiom is also used for a partially ordered group: https://en.wikipedia.org/wiki/Partially_

ordered_group

https://www.cs.unm.edu/~mccune/prover9/
http://geographicknowledge.de/vocab/quantity.txt
https://en.wikipedia.org/wiki/Partially_ordered_group
https://en.wikipedia.org/wiki/Partially_ordered_group
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Strictly ordered quantities are unequal, and overlapping quantities have a common lower
bound in this ordering. However, sometimes, we need to interpret the ordering in terms of
parthood. In mereology [3], overlap is interpreted in the way that quantities share a common
part (e.g. two regions share a common region), and the neutral (0) element is the empty
part (e.g. the empty region). The operators can be interpreted both in an arithmetic as well
as a mereological sense. For example, in terms of arithmetic, we can interpret temperature
measurements 5◦K + 3◦K = 8◦K, area measurements 20m2 − 8m2 = 12m2, and time
measurements 2min ≤ 5min. Furthermore, in terms of mereology, two spatial regions can
form one bigger region, one interval of time can be deducted from another interval of time,
and a collection of two cars may be part of a collection of five cars. Overlap can mean that,
for instance, 25 to 29 minutes and 28 to 31 minutes overlap, because they share the range of
28 to 29 minutes.

Many plausible theorems about quantities can be proven in this theory. For example,
the fact that when we add a quantity greater than zero to another, the result will always be
strictly greater than the original quantity.

I Theorem 2.

x + y = z ∧ y > 0 =⇒ x < z Strict order add

3.1.2 Amounts as extensional mereological quantities
The similarity of the above mentioned axioms to mereology5, e.g. to an algebra of spatial or
temporal regions, was already mentioned above. However, this interpretation comes with
extra assumptions: in spatial or temporal reference systems, e.g., there always exist regions
that are autonomous in the sense that they are not a part of each other. Furthermore, when
regions are not part of each other, they give rise to new kinds of (supplemented) region
hierarchies that exist in parallel. Thus, these regions are not linearly ordered anymore6. We
make this possible interpretation of a quantity more explicit by adding axioms of a subtheory
that turn quantities into domains with an extensional mereology which are not totally ordered:

I Axiom 3.

¬(y ≤ x) =⇒ (∃v(v ≤ y ∧ ¬O(v, x))) Strong supplementation
∃x, y(¬(x ≤ y ∨ y ≤ x)) Non totality

Strong supplementation turns the theory into an extensional mereology, which is a specializ-
ation of a partial order, where ≤ can be interpreted as ⊆ and non-overlapping quantities
exist if quantities are not part of one another. Non-totality makes sure there are at least
two independent quantities that are not part of each other. In this theory, it can e.g. be
proven that if you sum up two quantities greater than 0 where one is part of the other, this
will always generate the greater one of the two as a result of the operation (reflexivity of
sums), which is in apparent contrast to the number line7. Furthermore, it can be proven
that non-zero quantities with the same proper parts are equal (extensionality):

5 More precisely, the partial order forms a ground mereology without supplementation, and the sum
axioms introduce a closure principle into the mereology, see [3].

6 They form a lattice in the mathematical sense.
7 This would mean e.g. that 4+4 = 4
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I Theorem 3.

(0 ≤ x ∧ x ≤ y) =⇒ x + y = y Reflexivity of sums
(0 < x ∨ 0 < y) =⇒ (∀z(z < x ⇐⇒ z < y) =⇒ x = y) Extensionality

The theory contains the most important elements for defining sets in terms of set intersection
and union. Note, however, that set theory is, again, only a particular interpretation of this
theory8. There are also other important interpretations, for example, in terms of parthood of
physical things, portions of amounts of matter, or else in terms of intervals in time or space.

We call domains that satisfy the axioms of this subtheory amounts. The intuition is that
amounts are quantities that can be added to different (independent) piles.

3.1.3 Magnitudes as totally ordered quantities
The other subtheory of quantities that is relevant for us simply assumes a total order. This
makes the domain linearly ordered.

I Axiom 4.

x ≤ y ∨ y ≤ x Totality

We call such quantities magnitudes, and we use this theory to talk about quantities such as
size, duration, or the count of a set, which are on a common linear measurement scale. In
principle, totality would be compatible with strong supplementation alone, but it can be
proven that this would shrink the domain to a single element. To be useful as a subtheory,
we therefore also assume non-totality and thus both theories exclude each other.

3.2 Measure and control
Sinton’s roles are important for us because they relate different quantities to each other in
terms of measurements. In our theory, we assume that the role of control is always played
by amount quantities whereas the role of measure can be played any kind of quantity. For
example, a baker may want to measure how much flour he or she uses in a day in kg. Here,
we measure a magnitude of flour controlled by an amount of time. Alternatively, a certain
volume of soil contains a particular amount of sand. Note that in the latter case, amount
means that there might be a different amount of sand with the same weight measured in
kilogram.

Using our basic theory of quantities, we introduce a function which maps controlled
amount quantities to measured quantities:

I Definition 4. Measurement of quantities
Let X be a domain of amounts, and Y be any domain of quantities. Let m be a function
X → Y . Then m is called a measurement function, and ∀x ∈ X are called controls, and ∀x
m(x) ∈ Y are called measures.

For example, on a particular day of baking we measure 25 kg of flour, or a certain volume
of soil has a certain amount of sand.

A note on the formal properties of m: Intuitively, we would always expect that two
different controls can exist that have the same measure. This means the measurement

8 https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory

https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
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function is expected to be non-injective in the case of a magnitude measure. An example
would be two different piles of sand with the same weight, or two lectures of the same
duration. However, if the measure is also an amount, we would expect, in contrast, that the
measurement function is injective, at least in many cases. So every quantity in the range of
the function has only a single quantity in its domain. For example, two distinct amounts of
sand are always contained in different regions of space, even if they have the same weight
magnitude. However, we also have counter examples (measurements of amounts that are not
injective), like the measurement of a projected area given some region in three dimensions.
Therefore we leave injectivity out of the formalism for now.

3.3 Defining extensivity
In this section, we define extensivity as a property of a measurement function between two
quantities. In our example of the baker, the daily recordings give the baker the ability to
calculate the total use of flour during a week by adding up the daily recordings of used flour.
This can only be done because time intervals as well as amounts of flour both can be added
up in a coordinated manner.

We say that two quantities are additive with respect to a measurement function m, iff
the following holds:

I Definition 5. Additivity of measurememts

∀x, x′ ∈ X. (¬O(x, x′) =⇒ m(x) + m(x′) = m(x + x′)) ⇐⇒ Additive(x, x′, m)

This definition says that the measurement of the mereological sum of two independent
quantities (that do not overlap) in the same domain of control should be the same as the
sum of their measures. For illustration, consider the weight of the contents of two buckets of
ice. Piling up the contents of the two buckets results in a quantity of ice that has the same
weight as the sum of the individual weights of each of the buckets of ice (minus the buckets
themselves). Note that the two quantities of ice should not mereologically overlap. This
avoids errors like the following: One could make two selections of ice from a big pile, each
containing two-thirds of the total ice in the pile, and sum them up, which gives 1 2/3 of the
total ice pile. However, that would not correspond to the actual amount of ice in the pile.

Whether a quantity (as a domain) is extensive depends on the additivity of its elements
in the context of a measurement function:

I Definition 6. Extensivity of a quantity domain Y being measured w.r.t. a control domain
X

ExtensiveWrt(Y , X , m) ⇐⇒
∀x, x′ ∈ X(Additive(x, x ′, m) ∧ (m(x) ∈ Y ).

Note that extensive measurements are homeomerous in the sense that every mereological
part of a controlling amount can be measured within the same quantity domain Y. If a
quantity domain Y is extensive with respect to an amount domain X under measurement
m, many additional theorems can be proven. For example, if we remove an amount y from
another one x of which it is a part, then the measure of the resulting amount will be the
same as when subtracting the measure of y from the measure of x:

I Theorem 7.

y ≤ x =⇒ m(x) +−m(y) = m(x +−y) Subtractivity
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This notion applies to many examples of quantities. For example, in the specified sense,
an amount of sand is extensive with respect to a given volumetric space. In addition, a
weight of sand (in kg) is extensive with respect to the corresponding amount of sand. Note
that extensivity can also apply in the opposite direction: the volumetric space that sand
occupies is extensive with respect to the amount of sand. And a volume of sand (in m3) is
extensive with respect to the corresponding volumetric space it occupies. While it happens
to be that volumetric space and mass of sand are both extensive with respect to each other,
it should be stressed that extensive relations are not necessarily bi-directional. This depends
on whether m is bijective or not (and thus whether there exists an inverse function). In
our theory, it can e.g. be proven that m needs to be non-injective in case m maps into a
magnitude, under the additional assumption of domain closure (such that there always exist
amounts with equal magnitude).

There is also the possibility that a single measure is extensive with respect to multiple
controls. For example, a measure of total precipitation is controlled by space (e.g. m2) and
time (e.g. days). At this point only a theory of relations between a measure and a single
control has been established. However, the definition can be easily adapted. In the case of
multiple controls of a measure, let m be a function X, A, B, . . .→ Y , where X, A, B, . . . are
all domains of controls. We define additivity with respect to one of these controls keeping
the others fixed:

I Definition 8. Partial additivity

∀a ∈ A,∀b ∈ B, . . . , ∀x, x′ ∈ X. pAdditive(x, x′, m) ⇐⇒
(¬O(x, x′) =⇒ m(x, a, b, . . . ) + m(x′, a, b, . . . ) = m(x + x′, a, b, . . . ))

For example, precipitation can be considered extensive with respect to its spatial control
when its temporal control is fixed. If a measure is partially additive with respect to a single
control, we can also say the measure is partially extensive. For example, the measure of
total precipitation is partially extensive with respect to its spatial control. If and only if the
definition holds for all inputs we can speak of a fully extensive measure. For example, total
precipitation is partially extensive with respect to all spatial and temporal controls, thus is
fully extensive.

4 Amounts and magnitudes in relation to GIS core concepts

In this section the definition of amounts and magnitudes from the last section are related
to prevalent concepts in GI-science. Concretely, we consider the relations between amounts
and magnitudes on the one hand and objects, fields, events, and networks on the other.
For the latter four concepts, we follow the specifications proposed by Kuhn [20], which are
formally defined by Scheider et al. [30]. We argue for a modelling approach where amounts
are introduced as an intermediary step for quantifications of properties. Finally, we introduce
four types of amounts, which we schematized in context of the core concepts.

4.1 Core concepts
Kuhn [20] proposes ten core concepts of the semantic characteristics of spatial information.
Six of these concepts allow spatial reasoning while four allow reasoning with the information
represented by the spatial concepts. Unlike the other concepts, four of the spatial concepts
identify the existence of some thing or stuff at some location or locations, to which spatial,
temporal and thematic information can be attributed. For example, the coordinates 48° 51’
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29.1348” N and 2° 17’ 40.8984” E and a weight value of 10,100 tons can be attributed to an
object, specifically the Eiffel tower. In general, we refer to the concepts that identify the
existence of things or stuff as entity9. Four of Kuhn’s spatial concepts, namely object, field,
event and network meet this criterion. We limit our focus to these four concepts.

In spatial information, an object is a representation of a spatially discrete entity. Because
of their discrete nature, objects can be counted. For example, it is possible to count five cars
in a parking lot. Within the context of GIS, a common example of an object is a statistical
region, like Europe, the Netherlands, and Utrecht. Objects are characterized by having
identity (i.e. each object is unique). To illustrate, two cars of the exact same type and
production year may be distinguished by their two different license plates.

An event is a representation of a temporally discrete entity. For example, an earthquake
does not persist through time; there is an interval of time in which an earthquake took place.
Events are similar to objects in the sense that they can be counted. The difference between
the concepts is that events are endurant, meaning they have limited existence, while objects
are perdurant, meaning their existence is not essentially bounded by time. For example, a
car could persist indefinitely if natural decay is disregarded. However, a car crash implies
there is a moment in time in which the crash took place. Although events often exist in the
spatial domain, this is not necessary. For example, a birthday occupies an interval of time,
but not a region of space.

A network is a relation between a pair of entities (e.g. two objects) and a qualifier. This
could for example be the shortest route (qualifier) between a worker’s home (object 1) and
their office (object 2). Kuhn [20] distinguishes path networks (e.g. a route from home to
work) and link networks (e.g. a trade relation). Networks can be counted. It is for example
possible to count the number of possible routes between two points or how many segments a
route has (The latter could for this purpose be interpreted as a concatenation of networks
with the vertices as begin and end points). Although networks derive their meaning from
being a relation between entities, their existence is not dependent on it. For example, the
original trading posts along the silk routes have all disappeared, but the network of silk
routes remains as a historical notion.

A field is a representation of a spatially continuous property or entity. In this case,
continuous does not mean that the field has a limitless extent per se, but rather that its
semantic meaning does not depend on its extent. For example, a temperature field can be
split into two. These two new fields are still temperature fields. In contrast, splitting an
object in a similar fashion may destroy the integrity of the data representation (e.g. half of a
car is not a car). Numeric values of fields are intensive, meaning they should be averaged
during aggregation. For example, a distance field contains varying values representing the
distance, e.g. to a specified point. Summing these distance values would make little sense for
all but very specific purposes and would always result in an abstract sum. There is still a lack
of consensus about whether a field just represents continuous properties or also continuous
entities [24, 25]. While it seems generally accepted that for example temperatures should be
considered as fields, it is not clear whether they should also be used to denote continuous
entities like water or sand. A land use dataset may be considered as a field containing
different land uses as its values, which shows what kind of land use covers a certain area.

9 Note that beyond the scope of this paper the term entity is ambiguous (see e.g. [28]).
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4.2 Entity, amount and magnitude

In section ??, the relations between amounts and magnitudes are defined using a measurement
function which assumes a mapping from a control to a measure. A similar mapping function
can be defined for relations between entities and amounts or even entities and magnitudes.
This function would map from e.g. an object to an amount, which in turn could serve as
the control for a magnitude measure in the measurement function. To illustrate, a car may
relate to an amount of four wheels, which gives a magnitude of four.

It may be tempting to directly relate an entity like an object or field to a magnitude for
the sake of modelling simplicity (e.g. a car is related directly to a magnitude of four wheels
without an intermediary amount). This direct mapping is the dominant approach in data
modelling, both within GIS and beyond (e.g. [17, 18]). Although not necessarily erroneous,
this approach complicates the maintenance of the mereological integrity of entities in data
models. Assume for example that there exists an apartment complex with 46 residents and
an individual apartment with 5 residents (Figure 1a). A mapping from entity (in this case
an object) to magnitude would not capture information about whether the aggregation of
the apartment and the complex counts 46 or 51 residents (i.e. are the apartment residents
also apartment complex residents?). Adding additional information is thus necessary. A
common approach to do so is to add a relation specifying whether the apartment is part of
the complex (Figure 1b). However, this would not relate the counts of 46 and 5 residents
themselves, but rather the apartment and complex that carry the resident counts as an
attribute. Although resident count has the same meaning in relation to each of the two
entities, this is not necessarily the case. For example, the number of direct neighbours
(residents in rook contiguous apartments of a given apartment) is a count of neighbours for
individual apartments, but not for the apartment complex. For the complex, it is a count of
the number of neighbour relations between residents of the apartments within the complex.
As can be seen in Figure 1b, this subtle information is easily lost during aggregation. Of
course, the attribute could be relabeled accordingly, but this would have the adverse effect
that the parts do not carry the same label as the whole.

Explicitly identifying the resident counts as amounts circumvents the issues encountered
during the aggregation of entities and allows the preservation of homeomerosity (Figure
1c). Using the approach suggested by Guizzardi [14], the parthood of the 5 residents to
the 46 residents can be explicated, regardless of which entities relate to these two amounts.
Instead of saying that the apartment is part of the complex, it is said that the 5 residents in
the apartment are part of the 46 residents in the complex. In addition, the dimensions of
parthood become explicit. The amount of residents relates to both the apartment and the
apartment complex. However, it is not necessary to use the apartment complex as a carrier
for the aggregated amount of neighbours, because this amount can exist independently. In
summary, amounts can serve as a focal point for relating quantitative attributes with each
other, relations of which the extensivity relation is an example. For instance, a count of
residents is mutually extensive with a count of neighbours if the same people are being
counted.

4.3 types of amounts and magnitudes

We find four different types of amounts and magnitudes, based on two distinctions. These
distinctions are (1) whether the measured entity is discrete or continuous and (2) whether
the value of the measure is nominal or ratio-scaled. The typification bears a resemblance
to Talmy’s notion of quantity disposition [33], which distinguishes between discrete and
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(a) Apartment complex with
numbers of residents

(b) Entity-magnitude modelling

(c) Entity-amount-magnitude modelling

Figure 1 Entity-magnitude and entity-amount-magnitude approaches for the apartment example.
Apartment 1 is the top-left apartment. Apartment 2 is the top-middle apartment.

continuous and between unbounded and bounded phenomena. An important purpose for
these types is to distinguish different methods of aggregation and how these relate to the core
concepts. However, we limit our focus to extensive aggregations, which means the following
types do not capture statistical aggregates like average, standard deviation, minimum and
maximum. The four type pairs are schematized in Figure 2 and can be understood as follows:

Figure 2 Amounts and magnitudes in relation to the core concepts

Yellow ellipses denote entities; Orange ellipses denote amounts; Blue ellipses denote magnitudes;
Black arrows denote measurements; White arrows denote generalization

A Discrete RatioA amount is an amount of a discrete entity (i.e. object, event or
network) which represents an attribute with a ratio-scaled measurement scale. For
example, the weight of a car is ratio-scaled and attributed to a discrete entity. Although
a ratio scale implies some sense of unboundedness of the attribute, the attribute is
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essentially bounded by the entity by which it is carried. As a result, these amounts can be
summed as discrete chunks of continuous stuff. For example, the weights of a 20kg brick
and a 50kg metal pipe can be summed, which means we can infer that the combination
weighs 70kg. We thus refer to the magnitude of this kind of amount as a sum.
A Discrete NominalA amount is a count amount of a collection of homeomerous
discrete entities. For example, a collection of five cars can be counted because five discrete
entities carry the same nominal value (e.g. ’car’) from which they get their homeomerosity.
Different selections may lead to different amounts. For example, selecting all entities that
are ’car’ and ’blue’ may give a count of three blue cars. It is also possible to aggregate
different counts. For example, a count of five cars can be aggregated with a count of three
bicycles, giving a count of 8 vehicles. We refer to the related magnitudes as counts.
A Continuous RatioA amount is an amount of a continuous entity representing a
ratio-scaled attribute, such as the weight of sand or the size of forested area. These
amounts are not an intrinsic part of the entity in the sense that the amounts can increase
or decrease in size without changing the essence of the entity. Regardless of whether the
amount of water can fill a cup, a swimming pool or an ocean, it is still recognized as water.
Because of this characteristic, they cannot be summed like Discrete RatioA amounts.
Rather, they need to be measured using an integral function. For example, the distance
between a moving point and a static point increases gradually while the first point moves
away. Depending on the level of accuracy, the distance measure may yield 1 meter, 1.2
meter, 1.23 meter, 1.232 meter, et cetera. Probst [26] considers the possibility of relating
multiple measurements to the same phenomenon. Our entity-amount relation enables
such an approach because multiple amounts can represent measurements of the same
entity. Simultaneously with the demarcation of the amount, the value of the magnitude
is found with the integral function. For this reason, we refer to this magnitude as the
integral.
A Continuous NominalA amount contains the variety of nominal values within a
continuous entity. For example, water can be considered as just water, which gives a
variety of one. However, one could distinguish sweet water and salt water, which would
give a variety of two. An amount itself can be considered as a continuous entity. In this
case, the variety would always take a value of one, because amounts are homeomerous.
Continuous NominalA amounts can be considered as the set of nominal values. As a
result, there should be no duplication during aggregation. For example, the set of red
and blue on the one hand and the set of yellow and blue on the other hand constitute the
set of red, blue, and yellow, not the set of red, blue, blue, and yellow. The variety of this
kind of amount is thus equal to the cardinality of the measured entity’s set of nominal
values within the attribute of interest. The magnitude of the kind of amounts discussed
here can therefore be typified as variety.

Note that in Figure 2 amount is a subclass of entity. This relation entails that amounts
both denote continuous entities, which are substances like water and sand, as well as properties
of those continuous entities, such as weight and distance. A distinction between amounts
as entities and amounts as attributes may be desirable for two reasons. Firstly, an amount
’liter of water’ currently has the same class as an amount ’water’. This is despite the former
having a unit of measurement and the latter not having one. Secondly, amounts may have
nominal values attributed to them. While this could be useful (e.g. it could be desirable
to attribute the color ’blue’ to water), it does contradict the homeomerosity of the water
amount (e.g. ’blue’ water is not the same as ’red’ water). Note that attributing nominal
values to an amount is only sensible if the amount is considered as an entity. As an attribute,
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the usefulness of an amount is that it quantifies a property of another entity. For example,
the question "How much water is in this cup?" inquires about (the magnitude of) the amount
of water in e.g. milliliters, not the color of the water in the cup. Entity amounts and
attribute amounts could thus be considered separate (sub)concepts, because they may have
different identity criteria (See [11]). Entity amounts are identified by means of a nominal
value denoting an unbounded substance. This allows for example the distinction between
’sand’ and ’water’ in common speech. Attribute amounts, on the other hand, are identified
by a unit of measurement and some quantifier, like a number. For example, it can be said
that a cup contains 20 milliliters of ’stuff’. It is not necessary to know what this stuff is in
order to know how much stuff there is. We leave a scrutinous formalization of entity amounts
and attribute amounts and their corresponding identity criteria for future work.

5 Classification of geographic amounts

Different classes of extensive geographical measures can be found based on distinguishing
categories of the quantities being measured. Using the (super-) categories time, space and
content, and distinguishing magnitudes and amounts for each, a total of nine classes can be
found, where each measurement class is represented as an arrow between domain categories
in Fig. 3. Three kinds of measurements map from amounts to magnitudes within the category
time, space or content, while six map between amounts of different categories. In the
following, we discuss each of the nine relation classes. This is done with the use of nine
examples, which are assembled in Figure 4.

Figure 3 Extensivity triangle, showing possibilities of extensive measurements between three
categories of quantities. Blue ellipses denote magnitudes, orange ones denote amounts.

5.1 Magnitude-of-amount measurements
A magnitude-of-amount measurement (measuring a magnitude of an amount) retrieves a
magnitude which corresponds to (a selection of) some amount. We distinguish three of these
within GIS, namely size measures which are spatial magnitudes, duration measures which
are temporal magnitudes, and value measures which are other kinds of magnitudes, such as
a count of objects, a monetary value, or a weight measure.

Size measures derive magnitudes from regions of space. Figure 4a provides an example
of a size measure. The map depicts the spatial sizes of the provinces of the Netherlands.
Clearly the regions of the provinces do not overlap and are partially ordered. They form
a spatial lattice with an extensive mereology (regions can be part of one another). The
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(a) Size measurement [35] (b) Duration measurement [37] (c) Value measurement [8]

(d) Capacity measurement [36] (e) Occupancy measurement [39] (f) Accumulation measurement[9]

(g) Dynamic measurement [10] (h) Space-time measurement (i) Time-space measurement [38]

Figure 4 Examples of measurement classes
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amounts are related to their size magnitudes, which in turn are totally ordered. According
to our definition of additivity, the sizes of the regions can be directly summed to infer the
sizes of mergers, because regions are spatially independent.

Duration measures retrieve magnitudes from intervals in time. Figure 4b shows the age
of churches in the Netherlands that exist for at least 500 years. In this example, the intervals
of existence of each church overlap for at least the last 500 years, meaning for some time the
churches exist at the same time. Just like with sizes, durations of existence can be compared
and be added up to derive the duration of existence of all churches. However, when summing
up, overlaps need to be taken into account.

Value measures derive magnitudes from amounts of content, which are basically all
amounts that are not in space or time. In Figure 4c, each bubble represents a magnitude of
energy of an amount of wind turbines. Note that each bubble may contain multiple wind
turbines which are implicit here. Another possible value measure would be the number of
wind turbines in each cluster.

5.2 Amount-of-amount measurements
An amount-of-amount measurement measures an amount by using another amount as a
control. For example, a population can be measured by controlling space and counting
the individuals within this space. Also, the space they occupy can be found by measuring
the spatial extents of the individuals. Note that the former and latter spatial amounts are
opposed to each other10. We distinguish nine amount-of-amount measurements. Six of
these are mappings between different amount categories, while three of these, namely region,
interval, and substance, are mappings between different amounts within the same categories
(e.g. from hours to minutes).

We identify six classes of measurements, namely capacity, occupancy, accumulation,
dynamic, space-time, and time-space, where an amount is extensive with respect to an
amount of a different category.

A capacity measurement maps from a spatial amount to a content amount. Figure 4d
shows the population amounts of each province (e.g. the ’population of Utrecht’) which
has a certain magnitude (e.g. 500,000). The population amounts themselves are measured
with the regions as controls. For example, the population of Utrecht is measured with the
region of the province of Utrecht as control. An occupancy measurement is the inverse in
the sense that it maps from a content amount to a spatial amount. Figure 4e shows the
living areas of European Pine Martens in the Netherlands, which is the result of such an
occupancy measurement.

An accumulation measurement maps from a temporal amount to a content amount. Such
measurements produce accumulations of content within a time interval. Figure 4f shows the
net gain of long-wave radiation over one day. For each point in the Netherlands, a magnitude
is given of the net radiation gain or loss accumulation over a day. These magnitudes are
understood as mappings from radiation content, which is controlled by some time interval.
The inverse of the accumulation measurement is the dynamic measurement, which map from
content amounts to temporal amounts. The example in Figure 4g shows the amounts of days
per region that have exceeded a threshold of >14 mm precipitation in a year.

A space-time measurement maps, as the name suggests, from a spatial amount to some
temporal amount. Figure 4h shows the route from Utrecht University to Groningen University,

10They correspond to the opposing arrows ”capacity” and ”occupancy” in Fig. 3.
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along with an indication of how long traveling this route takes by car. Note that this indication
is not just a duration magnitude, but also implies a finite interval in time in which someone
actually traveled. A longer path implies a larger time interval. This notion of time is key to
Hägerstrand’s Time Geography, which tells us that space accessibility is limited by temporal
constraints [16]. A time-space measurement maps from a temporal amount to a spatial
amount. Figure 4i shows the magnitudes of the amounts of traffic activity in 2019 in traveled
kilometers. Note that these amounts are extensive with respect to time intervals, so they
can be summed up with the amounts of traffic activity in 2018 to result in the amount for
two years.

It is also possible to measure amounts using amounts of the same category as a control.
For example, the churches in Figure 4b are selected from a bigger set of churches based
on whether they have existed over 500 years. Only the resulting sub-selection is shown
in the map with corresponding duration magnitudes. It is also possible to measure with
semantically different controls within the same category. For example, an amount of pets can
be measured with an amount of households as control. In turn, the amount of pets can be a
control for measuring the amount of mice caught by each pet. We refer to all these options
as region measurements, interval measurements and content measurements for respectively
spatial, temporal and content amounts.

6 Discussion and conclusion

To better understand and to automate decisions on the applicability of arithmetic operations
to spatial information, we have suggested that the concept of extensivity should be regarded
as a formal property of a measurement function between different kinds of quantities. We have
proposed an algebraic formalization of the underlying notions quantity, amount, magnitude,
and additivity of a measurement function, and have proven theorems that correspond with
our intuition about these concepts. While extensivity is currently primarily used to describe
the behavior of physical properties, like mass and volume, our model can be used to generalize
the applicability of this concept across various domains of measurement and different cases
of information aggregation relevant for GIS. Our definition of extensivity not only lifts the
restrictions of a fixed range of properties that can be considered extensive, but also the
reliance on system theory. Subsystems are replaced with a simpler notion of quantities
with an extensional mereology, similar to [14]. Furthermore, following earlier work [29],
we reused Sinton’s [31] notion of measure and control to define extensivity with respect
to various control domains within the categories time, space and content. This gives rise
to an extensivity triangle as a more versatile and succinct model of extensivity (or lack
thereof) that is directly applicable to various forms of geographic information. We have
tested this assumption by applying the model to a range of map examples, which allowed us
to systematically categorize measurements relevant for GIS into twelve classes of extensivity
that can be distinguished in principle.

The study is limited in that it ignores intensive, conjugate and composite (derived)
quantities. These quantities are often, if not always, the results of multiplicative and divisive
operations and they show a distinctly different behavior from extensive quantities, which
warrants further research. Regarding our categorization of classes of extensivity, the content
class is still a coarse container for many different kinds of geographic amounts. It could
thus be further differentiated according to the core concept model [20]. Furthermore, to
make the model practically usable, the dependency of various arithmetic operations (like
weighted average and sum) on the form of extensive and intensive quantities needs to be
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investigated [29]. Another area of research is to investigate the role of amounts in natural
language processing, such as geo-analytical question answering [40]. Future research should
focus on developing conceptual modelling practices involving extensivity relations, on testing
our notion of extensivity on empirical data involving analyst behavior, and on intensive and
alternative types of quantities.
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